A. Phương pháp giải & Ví dụ
Định nghĩa:
Phương trình bậc hai đối với một hàm số lượng giác Là phương trình có dạng :
a.f2(x) + b.f(x) + c = 0
với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).
Cách giải:
Đặt t = f(x) ta có phương trình : at2 + bt +c = 0
Giải phương trình này ta tìm được t, từ đó tìm được x
Khi đặt t = sinu(x) hoặc t = cosu(x), ta có điều kiện: -1 ≤ t ≤ 1
Ví dụ minh họa
Bài 1: sin2x +2sinx - 3 = 0
Bài 2: cos2x – sinx + 2 = 0
B. Bài tập vận dụng
Bài 1: 1/(cos2 x)+tanx-1=0
Lời giải:
Bài 2: cosx – sin2x = 0
Lời giải:
Bài 3: cos2x + cosx – 2 = 0
Lời giải:
Bài 4: 1 + sin2x + cosx + sinx = 0
Lời giải:
⇔ 1 + 2 sinx cosx + 2(cosx+sinx ) = 0
⇔ cos2x + sin2x + 2 sinxcosx + 2 (cosx+sinx )=0
⇔ (sinx + cosx)2 + 2 (cosx+sinx )=0
Bài 5: cos23xcos2x – cos2x = 0
Lời giải: